Chapter 11
Strings

Strings have their own chapter in this text purely because string operations
and transformations are incredibly frequent within programs. The algorithms
presented are based on problems the authors have come across previously, or
were formulated to satisfy curiosity.

11.1 Reversing the order of words in a sentence

Defining algorithms for primitive string operations is simple, e.g. extracting a
sub-string of a string, however some algorithms that require more inventiveness
can be a little more tricky.

The algorithm presented here does not simply reverse the characters in a
string, rather it reverses the order of words within a string. This algorithm
works on the principal that words are all delimited by white space, and using a
few markers to define where words start and end we can easily reverse them.

79

CHAPTER 11. STRINGS 80

)
2) Pre: walue # (0, sbis a string buffer
3) Post: the words in value have been reversed
4) last < value.Length — 1
5) start < last
6) while last > 0
7) // skip whitespace
8) while start > 0 and value[start] = whitespace
9) start « start — 1
10) end while
11) last — start
12) // march down to the index before the beginning of the word
3) while start > 0 and start # whitespace
14) start «— start — 1
15) end while
16) // append chars from start + 1 to length + 1 to string buffer sb
17) for i « start + 1 to last
18) sb.Append (valueli])
19) end for
20) // if this isn’t the last word in the string add some whitespace after the word in the buffer
21) if start >0
22) sb.Append(‘)
23) end if
24) last «— start — 1
25) start < last
26) end while
27) // check if we have added one too many whitespace to sb
28) if sb[sb.Length —1] = whitespace
29) // cut the whitespace
30) sb.Length « sb.Length —1
31) end if
2) return sb
33) end ReverseWords

11.2 Detecting a palindrome

Although not a frequent algorithm that will be applied in real-life scenarios
detecting a palindrome is a fun, and as it turns out pretty trivial algorithm to
design.

The algorithm that we present has a O(n) run time complexity. Our algo-
rithm uses two pointers at opposite ends of string we are checking is a palindrome
or not. These pointers march in towards each other always checking that each
character they point to is the same with respect to value. Figure 11.1 shows the
IsPalindrome algorithm in operation on the string “Was it Eliot’s toilet I saw?”
If you remove all punctuation, and white space from the aforementioned string
you will find that it is a valid palindrome.

CHAPTER 11. STRINGS 81

N W Y ¥ v v v v oy oy oy

[lsfrfol fefefrfr]s]alw]

(N Y Y Y Y
(e]

(wiafs]efrfefe]]

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20

left right

\ 4
A

Figure 11.1: left and right pointers marching in towards one another

2 Pre: wvalue #0
3 Post: walue is determined to be a palindrome or not
4 word « value.Strip(). ToUpperCase()

)
)
)
)
) left—0

) right «— word.Length —1

7) while word[left] = word|right] and left < right
) left —left+1

) right «— right — 1

0) end while

1) return word[left] = word[right]

2) end IsPalindrome

In the IsPalindrome algorithm we call a method by the name of Strip. This
algorithm discards punctuation in the string, including white space. As a result
word contains a heavily compacted representation of the original string, each
character of which is in its uppercase representation.

Palindromes discard white space, punctuation, and case making these changes
allows us to design a simple algorithm while making our algorithm fairly robust
with respect to the palindromes it will detect.

11.3 Counting the number of words in a string

Counting the number of words in a string can seem pretty trivial at first, however
there are a few cases that we need to be aware of:

1. tracking when we are in a string
2. updating the word count at the correct place
3. skipping white space that delimits the words

As an example consider the string “Ben ate hay” Clearly this string contains
three words, each of which distinguished via white space. All of the previously
listed points can be managed by using three variables:

1. index

2. wordCount

3. inWord

CHAPTER 11. STRINGS 82

(eleln] [afefe[| [n]afy]

0 1 2 3 4 5 6 7 8 9 10 M

Figure 11.3: String with varying number of white space delimiting the words

Of the previously listed index keeps track of the current index we are at in
the string, wordCount is an integer that keeps track of the number of words we
have encountered, and finally inWord is a Boolean flag that denotes whether
or not at the present time we are within a word. If we are not currently hitting
white space we are in a word, the opposite is true if at the present index we are
hitting white space.

What denotes a word? In our algorithm each word is separated by one or
more occurrences of white space. We don’t take into account any particular
splitting symbols you may use, e.g. in .NET String.Split! can take a char (or
array of characters) that determines a delimiter to use to split the characters
within the string into chunks of strings, resulting in an array of sub-strings.

In Figure 11.2 we present a string indexed as an array. Typically the pattern
is the same for most words, delimited by a single occurrence of white space.
Figure 11.3 shows the same string, with the same number of words but with
varying white space splitting them.

Thttp://msdn.microsoft.com/en-us/library /system.string.split.aspx

CHAPTER 11. STRINGS 83

2 Pre: wvalue #0

3 Post: the number of words contained within value is determined
4 inWord <« true

5 wordCount < 0

6 index +— 0

)
)
)
)
)
)
7) // skip initial white space
) while value[index] = whitespace and index < value.Length —1
) index — index + 1
0) end while
1) // was the string just whitespace?
2) if index = value.Length and valuelindex] = whitespace
13) return 0
14) end if
15) while index < value.Length
16) if valuelindex] = whitespace
17) // skip all whitespace
18) while value[index] = whitespace and index < value.Length —1
19) index «— index + 1
20) end while
21) inWord — false
22) wordCount «— wordCount + 1
23) else
24) inWord « true
25) end if
26) index — index + 1
) end while
) // last word may have not been followed by whitespace
) if inWord
) wordCount «— wordCount + 1
31) end if
32) return wordCount
33) end WordCount

11.4 Determining the number of repeated words
within a string

With the help of an unordered set, and an algorithm that can split the words
within a string using a specified delimiter this algorithm is straightforward to
implement. If we split all the words using a single occurrence of white space
as our delimiter we get all the words within the string back as elements of
an array. Then if we iterate through these words adding them to a set which
contains only unique strings we can attain the number of unique words from the
string. All that is left to do is subtract the unique word count from the total
number of stings contained in the array returned from the split operation. The
split operation that we refer to is the same as that mentioned in §11.3.

CHAPTER 11. STRINGS 84

Uniques Uniques

“test” “test”

“test!”

a) b)

Figure 11.4: a) Undesired uniques set; b) desired uniques set

)
2) Pre: walue #0
3) Post: the number of repeated words in value is returned
4) words «— value.Split(’ ")
5) uniques < Set
6) foreach word in words
7) uniques.Add(word.Strip())
8) end foreach
9) return words.Length —uniques.Count
10) end RepeatedWordCount

You will notice in the Repeated WordCount algorithm that we use the Strip
method we referred to earlier in §11.1. This simply removes any punctuation
from a word. The reason we perform this operation on each word is so that
we can build a more accurate unique string collection, e.g. “test”, and “test!”
are the same word minus the punctuation. Figure 11.4 shows the undesired and
desired sets for the unique set respectively.

11.5 Determining the first matching character
between two strings

The algorithm to determine whether any character of a string matches any of the
characters in another string is pretty trivial. Put simply, we can parse the strings
considered using a double loop and check, discarding punctuation, the equality
between any characters thus returning a non-negative index that represents the
location of the first character in the match (Figure 11.5); otherwise we return
-1 if no match occurs. This approach exhibit a run time complexity of O(n?).

CHAPTER 11. STRINGS 85

l——

woa | | tfefs]t] [[elels]t] [[efelsft]
o 1 2 3 4 1 2 3 4 o 1 2 3
index index index
*m'*m*é
vaen [[[ef[efefefsf [[[ef[tfef[rf[e] [| Je[t]e]r]s]
o 1 2 3 4 5 6 o 1 2 3 4 5 6 o 1 2 3 5 6
a) b) c)

Figure 11.5: a) First Step; b) Second Step ¢) Match Occurred

1) algorithm Any(word,match)
2) Pre: word,match #0
3) Post: index representing match location if occured, —1 otherwise
4) for ¢ < 0 to word.Length — 1
5) while word[i] = whitespace
6) it 1
7) end while
8) for index — 0 to match.Length — 1
9) while match|[index] = whitespace
10) index «— index + 1
11) end while
12) if matchlindex] = word|[i]
3) return index
14) end if
15) end for
16) end for
17) return —1
18) end Any

11.6 Summary

We hope that the reader has seen how fun algorithms on string data types
are. Strings are probably the most common data type (and data structure -
remember we are dealing with an array) that you will work with so its important
that you learn to be creative with them. We for one find strings fascinating. A
simple Google search on string nuances between languages and encodings will
provide you with a great number of problems. Now that we have spurred you
along a little with our introductory algorithms you can devise some of your own.

